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Abstract By using a meamfield approximation we give a semianalytical method for reducing 
data on metal-hydrogen systems, which allows for hydrogen-hydrogen (H-H) interactions 
beyond the level of pair'interactions. Interactions up to the niplet level are explicitly included 
here, althoub the method allows for interactions up lo any finite order. The model fits low- 
concentration data at one temperature and then predicts pressures, lattice expansion and various 
energies as functions of concentcations for a range of temperahlres. A Monte Carlo simulztion is 
used to lend support to the approximate validity of the mean-field approximation for calculating 
the entropy in the regime of low concentrations. We find an increasingly negative average 
triplet interaction energy as the H concentration is increased. Although the mean-field approach 
is not an adequate description of clustering phenomena leading to the a-p phase transition, 
nevertheless OUT finding of a more negative triplet energy with increased concentration may 
indicate the importance of beyond-pair interactions in the phase m i t i o n .  

1. Introduction 

Even though there has been extensive theoretical investigation into the absorption of 
hydrogen in palladium, many gaps in our knowledge of the system still remain. The 
models used to describe the Pd-HZ system include the quasi-chemical model [l,  21, Monte 
Carlo techniques [3], elastic continuum theory [4], effective-medium theory 151, local- 
density approximations 161 and molecular dynamics [7]. Given some assumed microscopic 
interaction between the hydrogen atoms., the simplest model for the statistical mechanics of 
these systems is the mean-field lattice gas model [8]. This is usually combined with the 
assumption of pair interactions between hydrogen atoms, often restricted to allow nearest- 
neighbour (") interactions only. It is known from lattice statics theory that hydrogen atoms 
in a metallic lattice experience long-range sh-ain-mediated interactions which go beyond a 
sum of pairwise interactions. In this paper we extend the mean-field treatment by allowing 
pair, triplet and in principle higher interactions between the hydrogen atoms. The intention 
here is not to formulate a 'supermodel', which describes all the properties of the Pd-HZ 
system accurately, but instead to see how beyond-pair interactions between hydrogen atoms 
can be treated in a semi-analytical fashion. 

Our philosophy is to assume that the microscopic energy of a metal-hydrogen system 
is the sum of the site occupation energies together with the pair, triplet, quadruplet, . . . n- 
tuplet terms. We then use a mean-field model to show that, at a low hydrogen concentration 
r,  the effects of these terms on thermodynamic quantities go as 1, r ,  r z ,  r3,  etc. Hence this 
hierarchy of interactions can be truncated in the low-concentration a-phase where r is small. 
This model, which we will term the minimization model, was carried out in practice up to 
triplet hydrogen interactions, as well as incorporating the experimentally measured change 
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in the lattice parameter a 191. In this model the Helmholtz free energy is minimized with 
respect to both r and 4 (where 4 is the dimensionless change A V / &  in lattice volume), 
with the desired effect of calculating both the thermally averaged site potential and the 
thermally averaged interaction cnergies in terms of r in the a-phase (i.e. when r is small). 
Some clues concerning the nature of the H-H interaction at the onset of the a + /I transition 
are also obtained using the minimization model. 

C E Buckley et a1 

2. Minimization model 

We seek a model which will account for lattice expansion and be able to calculate 
concentration-dependent thermal averages. The minimization model is constructed to 
account for the interaction between a H atom and another H atom anywhere in the lattice 
(pairwise interaction), and the interaction between a H atom and two other H atoms anywhere 
in the lattice (triplet interaction). Higher interactions are allowed but are not included in the 
numerical work. The model also incorporates an experimentally determined concentration- 
dependent change in the lattice parameter [9]. Direct thermal expansion is not explicitly 
considered as it is usually negligible compared with the hydrogen-induced lattice strain. 

The results of mean-field theory (see appendix 1 for a variational derivation) can be 
qualitatively understood by treating each hydrogen site as independent: the probability that 
it is occupied is then 

Here the effective (thermally averaged) site potential E. consists of the microscopic energy 
E of an isolated hydrogen atom in the lattice, plus a thermally averaged contribution from 
interaction with other hydrogen atoms: 

1 -  
2!  

2 = E  + Vzr + -v3rZ + . . . . 

E. depends on the average occupation r of other sites, via a sum of pair energies, triplet 
energies, etc, over all separations R: 

Vz = E")(O, R) 
R 

(3) 

In (3) and (4) the bare (non-thermally averaged) pair, triplet, . . . , energies E('), EO), . . , are 
defined in appendix 2; they can be derived in principle from microscopic theories applied 
to the low-concentration regime. The effective chemical potential in (1) is 

f i  = f!JL(Hz. gas) 4- 3 k ~ T  In zvib (5) 

where p(H2, gas) is the chemical potential of HZ gas outside the metal and 

Zvjb = [2sinh(pfto/2)]-' (6) 



Beyond-pair interactions 5817 

is the partition function for a ID harmonic oscillator; we have assumed an Einstein model 
for the lattice vibrations, with frequency w. 

A more detailed discussion of equations (1H6) is given in appendix 1, where we also 
treat the case of more than one type of hydrogen site (e.g. octahedral and tetrahedral in 
the case of Pd-H). In equations (1)+5) we have used the experimental fact 171 that only 
one type of site (octahedral, labelled j = 1 in appendix 1) is significantly occupied in the 
Pd-HZ system below T = 600 K. This allows us to suppress the index j of the appendix 
and thus to use a single fractional concentration r 0 ,  which is also the probability of site 
occupation. In appendix 1 it is also shown that the internal energy (thermally averaged total 
energy) per hydrogen atom in the same mean-field approximation is 

(7) 
1 -  1 -  

2! 3! 
~ = ~ r + - - ~ 2 r ~ + - ~ r ~ + o ( ~ ~ )  

while the entropy per H atom is the ‘ideal’ value given by 

S = - k s [ ( l  - r ) ln ( l - r )+ r ln r ] .  0 
In order to account for the observed [9] lattice expansion under hydrogen absorption we 

express the site energy E ,  the pairwise interaction energy v2 and the triplet interaction energy v3 in terms of @(r), where the dimensionless lattice expansion parameter @ is 8(n3)/a,3, 
with a the unit-cell side. We calculate energies in the a-phase where r is small; hence a 
Taylor expansion can be used to express the energies in terms of @: 

E = &lo + &lb@ + &IC@’ 
v2 = V b  + VB@ + V2@= 

v3 = v30 + 113*@ + v,&. 

(9) 

(10) 

(11) 

we s m s  that the nine parameters .qar &lb. E I ~ ,  V b ,  VB, V 2 ,  V3a, V s  and CL are 
independent of r and of the temperature T ,  under the assumptions given in the appendices. 
All nine parameters could in principle be determined theoretically from a microscopic (non- 
thermally averaged) analysis of the energy of various configurations of hydrogen in the 
lattice, as discussed in appendix 2. Here we take a different approach. We shall fit the nine 
parameters to experimental data at one temperature and then use them to predict system 
properties at other temperatures. This fitting and prediction are achieved by the standard 
statistical mechanical procedure of determining the equilibrium state as that which minimizes 
a mean-field approximation to the Helmholtz free energy. 

The total Helmholtz free energy Atot is divided into two components: the free energy A .  
of the solid including any absorbed hydrogen and the free energy A, of the hydrogen gas. 
To describe thermal equilibrium we minimize Am[ with respect to independent variations in 
@ and r: 

(12) Am = As + Ag 
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U, and S, are given by equations (7) and (8) and the vibrational contribution A,.jb to the 
free energy is 

C E Buckley et a1 

Avib = -3ks Tr(ln Zvib) (16) 

where Zvjb is given by (6). 
We differentiate (7), (8) and (16) with respect to r to find aA,/ar and then add this to 

aA, /ar  to give the partial derivative with respect to r of the total free energy per lattice 
site, which must be zero by (13): 

Setting the right-hand side of equation (17) to zero is equivalent to equation (1) and amounts 
physically to demanding that the hydrogen chemical potential is the same for the gas and 
the solid. In order to account for the hydrogen-induced lattice expansion we substitute the 
expression for B from equations (9)-(11) into (2) and then substitute equation (2) into (17). 
This gives 

The second condition for equilibrium is that AIoc be a minimum with respect to $; this will 
formally determine the degree of lattice expansion at any temperature, in terms of the nine 
PiUameterS & ] a ,  &lbr &IC, 9, VB, Vk ,  Vb, p3b and 4,: 

It can easily be shown that 

where p is the gas pressure and Vo is the unperturbed volume of the lanice. The partial 
derivative of the free energy of the solid with respect to g is all that remains to be found. 
We substitute (9). (10) and (11) into (7), and then substitute (7) and (8) into (15). A partial 
differentiation of (15) with respect to 4, using the assumption that S, and Avrb do not depend 
explicitly on 6, leads to the expression 

(21) 

From (19), the condition for equilibrium with respect to changes in lattice constant then 
becomes 

aAs - = zlbr  + %lCgr + + VDr2 + Vkgr' + V3br3 + f &5r3. 
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Table 1. The nine parameters which are calculated from the minimization made1 at T = 473 K 
are used to parametrize the Pd-Hz system in the u-phase in the tempentore range 433-553 K. 
The nine parameters are also used to calculate the energies of the Pd-Hz system in the a-phase. 

Parameter value 
Parameter symbol W mol-') 

El" -0.6617290 x 10 
E l b  0.151 1064 x 
El< -0.4990099 x IO3 
v, -0.4008274 x I@ 
v7.6 0.3595840 x 16 
v2 0.2395834 x IO4 
v% -0.5907503 x 10' 
V3b -0.285531 0 x IO-' 
v3< -0.645 559 8 x los 

If the nine parameters were known. then equations (18) and (22) could be solved to 
find the filling factor r ,  and the dimensionless change in lattice volume 4 at any desired 
temperature and gas pressure in the a-phase. Since the nine parameters are not known, 
equations (18) and (22) are used to establish values for these nine parameters by fitting 
suitable experimental data from the a-phase. There are nine independent parameters, and 
these should in principle be determined from M = 9 experimental data points. This fit is 
likely to be too noisy; so a least-squares procedure employing M > 9 experimental data 
points is used. 

Equations (18) and (22) can be solved using the following least-squares method. Square 
equation (18) and add it to the square of equation (22); then sum over M data points. The 
quantity so constructed is termed x and it is a measure of the departure between predicted 
and experimental data: 

These nine equations with nine unknowns (the nine Parameters) are set up by substituting 
M = 20 (r, 4, p )  data values [9, IO] into the nine differentiated forms of equation (24). 
This resulted in a 9 x 9 set of h e a r  equations which were solved using LU decomposition. 
The nine parameters obtained in this procedure are shown in table 1; data at T = 473 K 
were used in obtaining the fit. 
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3. Analysis of the Pd-Hz system in the or-phase, using the nine parameters 

The nine parameters just obtained can be used in principle to predict the P-C phase diagrams 
for the W-HZ system at any temperature. Before this can be accomplished, the P-C phase 
diagram at T = 473 K must be calculated and compared with the experimental P-C diagram 
at this temperature, so that the validity of the nine parameters can be tested. If the fit is 
good, it implies that the least-squares procedure has been successful. 

The following procedure was used to predict p(r ,  T), given the known values of the 
nine parameters. Both equation (18) and equation (22) contain p .  In equation (18) the 
pressure is found in the chemical potential p~ and p is explicit in equation (22). Solving 
for p in equation (18) gives 

C E Buckley et a1 

(25) 1 p = exp -(A@’ + B@ + c - D) ( k:T 

where 

A = &le + Vkr t i V 3 ~ ’  (26) 

B = &I* + VBr + $ t&-’ (27) 

C = & , . + V ~ r + ~ ~ 3 ~ r Z - k ~ T i n  (28) 

- In  [ 1 - exp (-:;-y} - 

Making p the subject of equation (22) results in 

(30) 
1 
vo p = - (qbr  + 2tlc@r + $ Vur’ + V&rZ + V3br3 + f V3c@r3). 

When (30) is equated to (25), the only unknown is @, since the nine parameters and T 
are known. @ ( r )  is calculated using the bisection method and then substituted back into 
equation (25) to find p .  

An excellent fit to the experimental data is found for both the calculated P 4 phase 
diagram and the calculated dimensionless change in lattice volume at T = 473 K. This 
implies that the minimization and least-squares algorithm are working well. 

The next logical step was to calculate the F C  isotherm and the dimensionless change 
in lattice volume in the or-phase at a series of temperatures, using the nine parameters 
calculated at T = 473 K. This was done for the temperature range T = 433-553 K. The 
calculated phase diagrams (open squares) for the temperatures T = 433 and 553 K are 
compared with the experimental phase diagrams (asterisks) in figure 1 (T = 433 K) and 
figure 2 (T = 553 K), and the calculated and experimental dimensionless change in lattice 
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Flyre 1. A comparison of the experimental (*) and 
calculated (0) P-C phase diagrams (see equation (30)) 
in the a-phase for the W-HZ system at T = 433 K. 
The calculated P-C phase diagram at this t e m p e m  
and a h r  temperam is determined using the nine 
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3.5 L 
0.00 0.04 0.08 0.12 I 6 

r 
Figure 2. A comparison behveen the experimental (4 
and calculated (0) P-C phase diagrams for the Pd-HZ 
system in the e-phase at T = 553 K. 

parameters derived from the minimization model a1 
T =413 K. 

parameter 4 at the above temperatures are compared in figure 3 (T = 433 K) and figure 4 
(T = 553 K). 

The agreement between experiment and calculation for the P-C phase diagrams is 
quite good at all temperatures. Temperatures above T = 473 K have larger calculated 
log P values, except for one value at T = 553 K, whereas at T = 433 K the calculated 
values yield slightly lower log P values. At T = 553 K, the last calculated log P value 
falls below the experimental value. This is to be expected since the onset of the fl-phase 
at T = 553 K is at r N 0.16 and the nine parameters were calculated at T = 473 K, where 
r ranged from 0.0045 to 0.0617. Hence the calculated values work well for over twice the 
range in r at which the nine parameters were calculated. 

The agreement between calculated and experimental 4 is very good at T = 433 K 
(see figure 3) for all concentrations considered and is also very good at T = 553 K (see 
figure 4) up to a concentration of r N 0.12, after which the calculated values start to fall 
away from the experimental results. Even at r 2: 0.12, the error between the calculated and 
experimental results is only about 8%. Once again there is close agreement between the 
calculated and experimental results for r-values over twice the magnitude of the r-values 
at which the nine parameters were calculated. 

Since the calculated results of the concentration-dependent pressures and the 
concentration-dependent dimensionless change in lattice volume are in sufficiently close 
agreement with the experimental results, an approximate parametrization of the Pd-Hz 
system in the or-phase in the temperature range T = 433-SS3 K has been achieved. Hence 
one can have a greater measure of confidence in the validity of the concentration-dependent 
energies calculated in the next section. 
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Flgure 3. A comparison of the experimend (*) and 
calculaled (0) dimensionless changes in lamce volume 
p in the a-phase for the Pd-HI system a1 T = 433 K. 
The calculated p (see equations (25) and 00)) af this 
lemperahm and other temperatures is determined using 
the nine parameren dcrived from the minimization 
model at T = 473 K. 
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Figure 4. A comparison of the experimental (e) and 
calculale4l (U) dimensionless changes in lanice Volume 
p in the e-phase for the W-HZ system at T = 553 K. 

4. Energy calculations for the Pd-& system 

The bare site energy E and the summed pair potentials vz and hiplet potentials V3 are 
calculated by substituting the nine parameters into equations (9Hll). The mean-field 
potential E is calculated by substituting these equations into (2). It is useful also to define 
the effective interaction energy v. This is the contribution to the mean-field potential E due 
to hydrogen-hydrogen interactions. From equation (2), this is 

P = Vzr + 4.'. (31) 

P is found numerically by substituting equations (IO) and (11) into equation (31). 
Figures 5, 6 and 7 are plots of E versus r, v; versus r and 4 versus r ,  respectively, 

at T = 173 K. The pair energy vz is linear in r whereas the site energy E and the triplet 
energy v, have a pronounced curvature. All the energies have sensible magnitudes and 
trends. E has small negative values and changes very little as r is increased. This is ta be 
expected since the calculation takes place in the a-phase, where the change in the lattice 
parameter is quite small. The increasing negative trend of E also has physical significance, 
since a small expansion of the lattice will compel the octahedral site to increase marginally 
in size, which in turn will lower the potential of the site, 

vz is a negative interaction between H atoms which changes by only 0.05 eV over the 
ranger = 0.004-0.06. It must be remembered that vz is not a nearest-neighbour or second- 
neighbour interaction but is the pairwise interaction with a selected hydrogen atom, summed 
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7 

Figure 5. The wncenuation-dependent site energy E (see equation (9)) in the a-phase for the 
Pd-Hz system at T = 473 K. The energies of figures 5-1 are calculated using the minimintion 
model. 

-0’36 r------ r------ 

0.00 0.01 0.02 0.0s 0.04 0.05 0.08 0.07 

r 
Figure 6. The concentration-dependent effective 
painvise interaction energy Vz (see equation (10)) in 
the a-phase for lhe Pd-Hz system at T = 473 K. 

-0.72 - 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

r 
Flare 7. The concentrationdependent effective triplet 
interaction energy 4 (see eqnation (11)) in the e-phase 
for the Pd-HI system at T = 473 K. 

over all other H atoms in the lattice. The fact that ?2 samples all separations equally is due 
to OUT lowest-order (‘point’) mean-field approximation. As a result, the negative value of 



5824 C E BucUey et a1 

shictly implies only that this term tends to attract more hydrogen atoms into the lattice 
out of the gas, if hydrogen atoms are already absorbed. If it is known on microscopic or 
other grounds that EP’(0, R) falls off monotonically with IRI, then one can also deduce 
that a negative value of v 2  implies an attractive pair interaction between hydrogen atoms, 
which would tend to favour clustering of hydrogen atoms once they are inside the lattice. 
This conclusion cannot be rigorously deduced from our mean-field analysis alone, however. 
Nevertheless, with this caveat, we shall describe negative pair and triplet interactions as 
‘attractive’. The attractive painvise interaction is consistent with the literature [6,7,9,11]. 
The major advantage of this model is that it takes into account the lattice expansion, and 
the painvise interaction energy is given in terms of the hydrogen occupation. 

v 3  is also a negative (‘attractive’) interaction, which becomes more negative as r 
increases. To our knowledge a concentrationdependent triplet interaction for H in Pd or 
any other metal or intermetallic has not yet been published. Some support for our finding 
is provided by the work of Oates and Stoneham [I21 who calculated some concentration- 
independent non-painvise interaction energies for the Pd-HZ system. They found that these 
were significant and attractive. Although our model is of a mean-field character and therefore 
inherently neglects clustering, the increasingly negative trend of the mean triplet energy as 
the concentration increases suggests that an increasingly attractive beyond-pairs interaction 
is occurring. One might expect this to play a role in clustering and hence in the transition 
to the @-phase. 

Table 2 compares the values of vzr. 0.5V;r2 and v calculated from the minimization 
model with the H-H interaction energies calculated by other methods [3,5,12-141. We 
note that values for the pairwise H-H interaction energy calculated from the literature are 
compared with the quantity vzr in the minimization model. It is evident from the table 
that our calculations split the contribution of the total H-H interaction energy into average 
painvise interactions and average triplet interactions. The other methods do not calculate 
the triplet contribution 0.5!@ to the total interaction energy V .  The values for the EAM, 
pair potentials and the harmonic crystal model are evaluated from a H-H interaction energy 
versus H-H distance graph [13]. The result from the EAM and EMT stem from elastic 
and direct electronic interactions. Our result for v using relatively simple techniques is 
comparable with the result obtained from the more advanced methods, such as EAM and 
EMT. No values for a concentration-dependent bare site potential were found in the literature; 
therefore no comparison with & ( r )  could be made. 

Table 2 Comparison of the painvise interaction and the total H-H interaction energy al a 
concenVation of I = 0.06 behveen that calculated from the minimization model with that 
cdculated from other models [3,5,1214]. The minimimion model is the only method which 
divides the total interaction energy into pairwise and triplet contributions. 

Method Vzr at r = 0.06 0.54r2 at I = 0.06 at r = 0.06 
used (meV) (mew h e V )  
Embedded a” model (€AM) [I31 -6.36 - -6.36 

Harmonic crystal model [31 10.56 - 10.56 
Effective-medium theory (EMT) 151 -15 - -15 

Minimization model -22 -1.5 -23.5 

Pair potentials [12] -4.94 - -4.94 

Molecular dynamics [14] -34.3 - -34.3 
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5. Validity of the mean-field approach 

The essence of our lowest-order mean-field theory is the neglect of explicit correlations 
between hydrogen occupations on different sites. In the variational approach given in 
appendix 1, this arises by writing joint occupation probabilities explicitly as products of 
single-site probabilities, within the context of the grand canonical ensemble of statistical 
mechanics. This ‘point approximation’ can be improved by splitting the lattice into disjoint 
clusters and writing the probability of a hydrogen configuration as the product of separate 
terms for each cluster; this results in a form of the Bethe approximation, which should give 
a more reasonable description of the clustering phenomena arising near the (Y 4 p-phase 
transition. By using the point approximation rather than a higher cluster approximation, we 
clearly lose the ability to describe this clustering transition in a direct fashion. Nevertheless 
the lowet-order mean-field theory is known to give semiquantitative information away from 
the phase transition, in three dimensions. 

In the variational approach, one assumes that the microscopic energy is known as a 
function of the microscopic hydrogen configuration. The approximations arise in evaluation 
of thermally averaged quantities: the entropy (which equals the ideal or non-interacting 
entropy in this approximation) and, separately, the internal energy. Then one forms the free 
energy from these quantities (or, in the grand ensemble, the grand potential); by minimizing 
this, one selects the optimum effective one-particle occupation probability. It is of interest 
to find which quantity causes the main error in mean-field theory: the entropy or the 
thermally averaged internal energy. To test this we performed a Monte Carlo calculation 
of the entropy with near-neighbour and second-neighbour occupation excluded, which is 
equivalent to assuming an infinite repulsive pair potential at these separations. The results 
are compared with the ideal entropy in figure 8 at low concentrations r corresponding to 
the or-phase. The close agreement suggests that the entropy is not the main source of error 
in the point mean-field approximation. In retrospect this is unsurprising; the likelihood of 
near-neighbour occupation with random uncorrelated site occupation is of order r 2  which is 
very small in the or-phase, and hence formal exclusion of these configurations in the Monte 
Carlo simulation makes little difference over and above the mean-field estimate. On the 
other hand, one can easily see that the intemal energy can be poorly estimated in the mean- 
field approach. For example, with infinite near-neighbour repulsive energy, the mean-field 
approach, which fails to exclude near-neighbour occupation. results in an estimate of +CO 

for the internal energy U. Thus, in the wphase it is principally the internal energy, and not 
the entropy, which causes the main error in mean-field theory. Despite this weakness of the 
mean-field approximation, it is known that low-order mean-field theory gives increasingly 
good results as the range of the interaction potential increases. It seems likely that our 
type of approach could be made to describe the system closer to the or-@ transition if a 
cluster larger than one were used in the variational approach. A small cluster could give 
an improved accounting of the strong short-range hydrogen-hydrogen interactions, and the 
long-range strain-induced pair, triplet and higher interactions can be expected to be well 
described by mean-field theory. Such an approach may be worth pursuing in the future, but 
the present work deals only with a cluster of one. 

6. Summary and discussion 

This paper has been concerned with parametrizing the Pd-H2 system in a specific 
temperature range as well as calculating concentration-dependent doublet and triplet 
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Figure 8. A comparison of the ideal enbopy (U) and lhe entropy calculated using Monte Carlo 
(*) methods. The entropy calculated using Monte Carlo assumes infinile repulsion brhveen H 
atoms within a radius out to second-nearest-neighbour distances. Even at lhe concentration a1 
which the 01 + ,9-phase traosition occurs in the Pd-HZ system (r = 0,0617) a1 T = 473 K. the 
difference bclween he hvo entropies is only 2.7%. 

energies. We have shown that H-H pair interactions, triplet H-H-H interactions and in 
principle higher hydrogen-hydrogen interactions can be treated in a semianalytical fitting 
procedure provided that one uses the mean-field approximation and works in the regime of 
low hydrogen concentrations; the essence of this fit is that the mean-field approximation 
leads to an expression, equation (Z), for the effective site potential in powers of the hydrogen 
concentration r. The coefficient of higher powers involve multi-hydrogen interactions. The 
entropy S and internal energy U also have expansions in powers of r (see equations (7) 
and (8)) whose coefficients are unequivocally related via OUT mean-field theory, to those 
of the effective site potential 2 (equation (2) or equation (A1.20) in general). A similar 
expansion in powers of the occupation probability r also follows for the Helmholtz free 
energy A = U - TS. 

We have found and tabulated the coefficients in mean-field-derived fit expressions for 
the pressure, effective potentials, energies and lattice expansion of Pd-H (table 1) and have 
shown they provide a comprehensive fit to experimental data for Pd-H in the a-phase 
in the temperature range 433-533 K. Lower-quality fits were found only for high T- 
and r-values more than twice the values for which the fitting was done, To investigate 
the appropriateness of the mean-field approach we have also performed a Monte Carlo 
calculation for the entropy. Interestingly, we find only fairly small differences from the 
mean-field (ideal) results for the entropy in the low-concentration a-phase. By contrast, 
for the high-concentration @-phase, the mean-field expressions for S (equation (8)) and U 
(equation (7)) could not be used; for these higher concentrations the ideal entropy and the 
internal energy would differ markedly from the true entropy and internal energy of the 
system. 

Although the number of fitting parameters in our best fits is large (equal to 9), the 
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advantage of the theoretically derived fit expressions, over arbitrary fitting functions, is that 
the potentials and energies in the fit expressions have simple physical interpretations. In 
particular the average (mean-field) potential energy of H on a lattice site can be divided 
into contributions from a concentration-dependent site energy .$, an effective average pair 
potential !&, an effective hiplet potential v 3  and so on. By making a clear distinction 
between these potentials we have found indirect evidence that beyond-pairwise interactions 
may be important in bringing about the CY + @-phase transition. 

While OUT mean-field fits are quite good, it appears that the large size of the cross 
coefficients v ~ ,  vk, i j b  and !733e between the pair and triplet interactions and the lattice 
expansion may indicate that OUT formalism is being forced to fit phenomena to which it is 
not ideally suited. One possibility is that one should reshict the lattice expansion coefficients 
(appearing in (9)<11) as pre-factors of powers of @) to occur only in the lowest-order term 
in the r expansion, and instead of higher lattice expansion coefficients one could introduce 
correlations (i.e. clustering) into the formalism by use of a Bethe or related Ansatz. It seem 
possible that a more natural fit to the data, possibly with fewer coefficients, would thus be 
obtained [15]. 

In principle the minimization model can be applied to other systems such as the 
LaNi5-Hz system. This particular metal hydride system exhibits a large difference in the 
hysteresis between that of an initial cycle and a well activated cycle 1161. Knowledge of 
the magnitude of the site energy and interaction energies at the concentration where the 
CY -+ p-phase transition occurs for these two cycles may provide insight into which energy 
is chiefly responsible for the large difference between the hysteresis of the two cycles. A 
forthcoming publication will describe the results obtained when the minimization model is 
applied to the LaNi5-Hz system in an attempt to interpret the influence of microstructure 
on hysteresis. 
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Appendix 1. Model for energetics and statistical mechanics of hydrogen in metal 

Let the metal have Nj available H sites of type j .  (In Pd-H, j = 1 represents octahedral 
sites while j = 2 represents tetrahedral sites.) An occupational state of hydrogen on the 
lattice is described by a set of occupation numbers nj,= = 0 or 1 where 1 < CY < NI,  and CY 

labels the different sites of a given type. A set of numbers {nj,=) completely describes which 
available lattice sites are occupied by hydrogen. Tbe lattice will have a unique distorted 
shape corresponding to each set {qa}. The energy of the whole lattice, including distortions 
but excluding lattice vibration which we treat later via a simple model, is 

(Al.l) 
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It is shown in appendix 2 that the site, pair, triplet, quadruplet, . . . , energies, E(' ) ,  E @ ) ,  
E(3) ,  etc, can be defined so as to be unique, at least in the low-concentration regime. 
Without a microscopic model there is no particular reason to assume E o )  < E", etc. 
We shall show, however, that the effect of the higher-order interactions is small at low 
concentrations, provided that one uses mean-field theory. From microscopic considerations 
it seems likely that strong effective interactions between hydrogen atoms, mediated directly 
by electron cloud distortion are of a fairly short range nature [17]. The long-range part 
is expected to be mediated by elastic forces of the lattice-statics variety [18]. (These of 
course also have an ultimate electronic origin but less directly so than the abovementioned 
short-range H-H forces, in that electronically initiated short-range forces between hydrogen 
atoms and the metal ions are sufficient to obtain long-range effective latticestatics forces 
between the hydrogen atoms.) For some of our work it  is also useful to define the 
(E")]  to have been determined by minimizing the electronic energy with respect to lattice 
distortions at a particular fixed volume, or equivalently at a fixed value a of the average 
lattice cell dimension. Thus the (E'")] are dependent on a; so we have, for example, 
E " ) ( ~ , u ,  j ' ,  U'. j" ,  a":a). This allows us to discuss the expansion of the lattice. (At high 
H concentrations it might be better to define the energies at a fixed average conduction 
electron density, but we do not do this here.) 

We assume that the system of metal plus absorbed gas is in contact with a heat and 
particle reservoir at temperature T = (kBB)-' and H (or D) atom chemical potential p,  In 
practice the reservoir is the HZ or Dz gas in contact with the metal, and by minimizing the 
total Helmholtz free energy with respect to transfer of gas molecules into the atomic form 
inside the metal, using 2N(Hz. gas) + N(H. metal) = constant, one obtains 

C E Buckley et a1 

(A1.2) 

For the lattice vibrations we assume an isotropic Einstein model in which the H atom at site 
( ja)  vibrates independently in three dimensions at frequency wj, and hence contributes a 
vibrational energy (vjmX + vjuy + U,,, + $~wj., where vj,, vj., and vjnr can independently 
take values 0. 1,2,3,  . . .. The exact equilibrium probability distribution for the lattice 
hydrogen state {nja, ujmz, ujuy. ujWz] [nja,  vja} is the Gibbs or grand canonical distribution 

1 P ( b j u ,  vi.}) = Qi'exp - B E ( { n j d )  - B ~ n j , h w j , ( u j ,  + ujay + uj,, + 
ju 

(A1.3) 

where 

(A1.4) 

is the total number of absorbed hydrogen atoms and where the grand partition function Qo 
is the sum, over all states (n ju ,  uju], of the exponential factor on the right-hand side of 
(A1.3). Here we are not interested in the individual vibrational levels vj,. Summing over 
all these quantities we obtain the probability of a hydrogen configuration [ n j a ) :  
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where 

(A1.6) 

is the configurational grand partition function or Gibbs sum for the absorbed hydrogen 
system. In (A1.5) and (A1.6), 

(A1.7) 

is the partition function of a one-dimensional quantal harmonic oscillator. 

which minimizes the quantity 
By the method of Lagrange multipliers, it is easily shown that (A1.5) is the distribution 

subject to the normalization condition 

(A1.9) 

In (A1.8), S is the Kolmogorov expression for the configurational entropy of the interacting 
hydrogen in the lattice: 

U is the internal energy given by 

(A1.10) 

The minimum principle (Al.8) allows the introduction of variational approximation schemes, 
the simplest of which is the usual mean-field approximation in which a joint probability is 
approximated as a product of one-particle probabilities: 

(Al. 12) 

Equation (A1.12) implies that occupation probabilities of different sites are independent, 
i.e. clustering is neglected at this level. (Improved approximations of the Bethe type could 
be derived by splitting p({n,,])  into a product over disjoint cluster terms each involving 
more than one site. We do not pursue this here, however.) With the use of (A1.12), the 
Kolmogorov entropy (A1.lO) becomes the ideal entropy 

s = -kB C{fj.(l) 1n[fiu(1)~ + h.(o) 1n[fi,(0)11 (A1.13) 
j =  

where, for normalization, we require &(O) = 1 - fju(l). The internal energy is the 
expectation of (Al.1) and this involves averages such as (nj,) ,  (njunf,,). ( n j m n j w n ~ a ~ ~ ) ,  



1 + - f j a ( l ) f i , ~ , ( l ) ~ " ~ " ( l ) E n ) ( j ( Y ,  j'a', j"a"). . . . (A1.14) 
3 ! juj#d j"d, 

Using (A1.13). (A1.14) and (A1.4) we now have the trial quantity (A1.8) as a function of 
{fie(l)]. The best mean-field state is obtained by minimizing separately with respect to 
each occupation probability &(I): 

+kBTb[fky(l)l - h [ l  - fky(1)l) - p - 3kBTIn[Zvib(p, @ky)]. (A1.15) 

In (A1.15), the extra factor of 3 in the hiplet term comes from the three possibilities 
for matching { k ,  y )  with one of the summation labels ja .  j'a', j'''0r"' in (Al.l), and the 
symmetry of E(3) under permutation of its arguments has been assumed similar arguments 
apply to the factor of 2 in the pair term. Rearranging (A1.15) we find that f k y  is a Gibbs 
diseibution for a single site with an effective one-particle energy 21, and the actual chemical 
potential p: 

where 

(Al. 16) 

(A I ,  17) 

(A1.18) 

is the effective one-site energy. 
Equations (Al.l I)-(A1.16) are valid even in inhomogeneous situations where 

depends on a, i.e. where f varies across the lattice. The above formalism could he used, 
for example, in a mean-field description of surface effects in H absorption. Here, however, 
we only consider the bulk properties and hence take fi.(l) = 0, independent of location 
01 within the crystal for each type j of absorption site. Then the mean-field distribution 
(A1.16) becomes 

(A1.19) 
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with 

& = E(' ) (k)  + ~ O j ~ ! & j Z x j .  + 4 c0jd;rtv3k;,j,, +. . . 
I' j C j "  

(A1.20) 

where 

n 

and 

(A1.21) 

(A1.22) 

In (Al.l9), Zj is the Einstein vibrational partition function (A1.7) for hydrogen on a site 
of type j ;  it is now assumed to be independent of location 01 within the lattice. 

The interpretation of (A1.16) or (A1.19) involves an independent site at which an 
absorbed hydrogen feels an effective one-body potential E ;  E depends on the average 
occupations of other sites. 

One can of course postulate (A1.16) or (A1.19) directly, but the above variational 
treatment has a number of advantages. Firstly, the coefficients vz, v3, . . . are related in an 
unambiguous way to the microscopic energies E([nj,)) (see (Al.l) ,  (A1.21) and (A1.22)). 
Secondly, the variational approach gives expressions for the entropy, internal energy and 
free energy by substituting the optimal (&) into (A1.13) and (AI.14). In particular, for a 
homogeneous situation, 

and 

s = Nj[ejln(oj) - (I - 0j)ln(1 - @,)I. (A1.24) 
j 

Thirdly. the above quantities when substituted into (A1.8) give a rigorous bound on the 
potential 0, because of the variational nature of this theory. 

Appendix 2. Considerations for decomposition of the energy into additive site, pair, 
triplet, . . . , contributions 

Consider a metal lattice with N hydrogen absorption sites divided into inequivalent classes 
j = 1 , 2 , 3 . .  . (e.g. j = 1 and j = 2 might represent octahedral and tetrahedral sites, 
respectively). We define the configurational state of the lattice-hydrogen system by the 
occupation numbers nj, = 0 or 1 where, for each j value, 01 runs from 1 to Nj. Nj 
being the number of absorption sites of type j .  Then there exists an energy function 
E((nj,]) which is the energy of a microscopic configuration of H on the lattice, including 
all electronic energies plus any energy of (static) lattice deformation caused by the presence 
of the hydrogen atoms. We now proceed to define singlesite, pair, triplet. . . , , energies 
E ( ] ) ,  Eo), E o ) ,  . . ., in a specific manner. 
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(1) Consider first the case where all nj, = 0. The energy in this case will be denoted 
E(") (N) ;  it is the energy (except vibrational energy) of the pure metal lattice, i.e. it is 
E({allnj, = O}). 

(2) Consider next the case where all nj. = 0 except for n J y  = 1. The single-site energy 
E(')  is defined as 

(A2.1) 

In principle, E ( ' ) ( J y )  depends on the location within the crystal y and the size and shape 
of the whole metal sample (because of surface effects, for example). However, for bulk 
properties, we shall assume that the sample is dominated by 'interior' absorption sites 
sufficiently far from the surface that properly extensive behaviour is seen. Under these 
circumstances, E("(J,  y )  is expected to depend on the type J of the site in question but 
not significantly on the location y of the site in the crystal. 

(3) Consider next the case where all nj,  = 0 except for two occupied sites corresponding 
to a = y and cf = 6, so that nlY = 1 and l l K 8  = 1. Then we define a pair interaction 
energy E(" by 

E(*) (Jy ,  K 6 )  = E({all nj, = 0 except n,, = 1, = 11) -E(') - E ( * ) ( J y )  - E("(K6).  
(A2.2) 

Again we assume that there is a majority of 'bulk' sites far from a surface where E(z) behaves 
extensively, i.e. depends only on separation (distance and possibly direction) between the 
sites J y  and K6. This assumption neglects a small effect, namely the change in the 
average electron density on addition of a second H atom, which will slightly change the 
most appropriate value of E ( ' )  to be subtracted in (A2.2). because the ultimate origin of H 
energetics in the metal is electronic: see also appendix 1. 

(4) Consider next the case where all nj, = 0 except for three occupied sites, so that 
n J y  = 1, 

E'3)(Jy ,  ~ 6 ,  LE) = E({~II nj. = o except nJy = 1, n K &  = I ,  nLE = 1)) 
- E") - E ( ' ) ( J y )  - E ( ' ) ( K S )  - E")(L&) 

- E'"(JY. K6) - E(*) (Jy ,  LE) - Ecz)(K6, LE). 

E " ) ( J y )  = E(allnj, = 0 except n,, = 1) - E'O)(N). 

= 1 and n h  = 1. Then we define a triplet interaction energy E@) by 

(A2.3) 

Again we assume that there is a majority of 'bulk' sites far from a surface where E@) is a 
function only of relative locations, and we neglect the change in average electron density 
on the values of E ( ' )  and E(*) to be subtracted in (A2.3). 

(5) The set of equations (A2.1), (A2.2) and (A2.3) can obviously be extended to define 
interactions E(") among n electrons at a time. The same type of equation, and assumption 
of extensiveness should be appropriate as long as the fractional H occupation is sufficiently 
low that the change in average electron density does not significantly alter the appropriate 
values of the E('). We shall assume that we are in such a low-occupation regime. Out 
of this regime it may be possible to maintain the same type of description provided that 
one refers energies to a state in which the average electron density is held constant by a 
Maxwell demon suitably compressing or expanding the crystal lattice. 

Finally, the type of equation that we have inhoduced to define the { E N ) .  plus the 
assumption of extensiveness, guarantees an expansion of the total E in terms of singlet, 
pairs, hiplet, . . , , energies; to see this, one merely needs to transpose the series of equations 
(A2.1), (A2.2). (A2.3). . . , , so that E stands alone on one side of the equation. It 
would be interesting to find out from microstructure theory how good is the assumption 
of extensiveness as used here. 
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